BEE
wn
—
(=]
<>

n
oo
o|=[=]

Figure 1: Depth first search.

Explorative behavior: depth ﬁ?“SZf search.

o=]<]e
(98]

+— :
T\ i2/
pioks ol
T9 \mmf/ s>
o 57\g o
/ -~ D N
n 10 S6
S 0

Figure 2: Depth first search and suggestion 1.

Suggestion 1:

of a block 1s in final position, do not move 1t.

S0

=|=]-]

B
N/
N

2
0] Je)
sS4
\ $3
2]

S8

Figure 3: Depth first search, suggestion 1 and 2.

Suggestion 2:

of any block can be oved to final position, this should
be done before any other type of move.

=[] &
o)

SO

n Sg é
I
[b] _at Sl
D] ITI \ S2 /
st I
n n \ l s4 / n
. -
dm- 7 | NG @
/ ITI g / \
b g0 $6
= b
B . []

Figure 4: Depth first search, suggestion 1, 2 and 3.

Suggestion 3:

of there 1s no block that can be moved to final po-
sitton, and there 1s a block that is above a block 1t
ought to be above but 1t is not in final position, put
it on the table.

Initial configuration

(1) on(C, A, Sp)
(2) on(A, B, Sp)
(3) on(B,Table, Sp)

Goal configuration

(4) on(A,C,S,)
(5) on(C, B, S,)
(6) on(B,Table,S,)

Unique names axiom

(7) Table £ ANTable # BATable #CNA# BNA#CANB#C

Clear
(8) a=TableVv =3Iy on(y,z,s) — clear(x,s)
Applicable action

clear(x,s) A clear(y,s) Nx # y Nz # Table —
(9) applicable(move(x,y), s)

Move action
(10) applicable(move(x,y),s) — on(x,y, result(move(z,y), s))

Frame axiom

applicable(move(z,y),s) A on(u,v,8) ANu # x —
(11) on(u,v,result(move(z,y), s))

(12) on(x, Table,s) N on(x, Table,s,) — final(x,s,,s)
(13) final(y, 555) A one,,) A on(r,y,5,) = final(e, 50,5)

Above

(14) on(x,y,s) — above(x,y, s)
(15) on(x,z,s) A above(z,y,s) — above(x,y, s)

(16) on(x,y,s) = under(y,z,s)
(17) on(x,z,8) ANunder(y,z,s) = under(y, x, s)

Action selection rules

Bad move 1: If a block is in final position, do not move it.

(18) final(x,s,,s) — bad(move(x,y), s, s,)

Safe move 1: If any block can be moved to final position, this should be done
before any other type of move.

S final(x, s,,8) A final(x, sy, result(move(z,y), s)) —
(19) good(move(z, y), 55,

Safe move 2: [f there is no block that can be moved to final position, and there is
a block that is above a block it ought to be above but it is not in final position, put it
on the table.

—Jw(final(w, sy, result(move(w, z), s)) A = final(w, s,, 8))A
= final(x, s,,8) A above(x,y, s) A above(x,y, s,) —
(20) good(move(x, Table), s, s,)

Depth First Search

ds;(VaVy(on(z,y, s) ¢ on(x,y, s;)) A selected(xy, s;)) —

(21) bad(x1, s, sy)
s, VaVy(on(z,y, s;) ¢ on(x,y, result(xs, s))A
—3s,VaVy(on(z,y,s;) < on(x,y, result(xq,s)) —

(22) better(xq, x2,38,S,)
ds; 3z s (VaVy(on(x, y, result(xq, s)) <> on(x,y, s;))A
result(x;, s;) = s AVaVy(on(x,y,s) < on(x,y, sp)))A

—3s; 3, 3sk(VaVy(on(z,y, result(xy, s)) ¢ on(x,y, $;))A
result(x;, s;) = s AVaVy(on(x,y,s) < on(x,y, sx))) —

(23) better(xq, x2,38,S,)

1 Reasoning
Meta-Rules

(24) x # y A good(x,s,8g) — bad(y, s, sg)
(25) bad(x, s,sg) — —good(x, s,sg)
(26))
(27))

=Vabad(x, s, sg
27 (

x # y Abetter(z,y,s,sg) — bad(y, s, sg

Consistency: Find an action that cannot be proved to be bad (see meta-rules)
for the current goal and situation.

10

2 Reasoning Strategies

Express reasoning strategies, proof schemas.

Knowledge handling rules: three main components.

1. the class of facts or goal the rule can be used to know about
2. the inference operator that should be applied

3. the class of facts that act as hypotheses for the inference

Can be composed like mathematical functions, and combined procedurally like

LISP programs.

11

1. ON-NOW(S)=CIRC(on(x,y,S): NOW, T7)

2. ON-GOAL(S,) =CIRC(on(z,y,S,): GOAL, 7)

DED(Vx(on(x,y,S) « on(z,y,S,)): ON-NOW(S), ON-GOAL(S,))
4. APPLICABLE(S)= CIRC(applicable(x,S): ON-NOW(S), 8, 9, 7)
DED(applicable(x,S) A Vy(applicable(y,S) — y = z) :
APPLICABLE(S))

6. NEXT(S,X)=CIRC(on(z,y,result(X,S)):

APPLICABLE(S), ON-NOW(S), 10, 11, 7)

7. FINAL-NOW(S,Sqg) = CIRC(final(x,S,,S): ON-NOW(S),
ON-GOAL(S,), 7, 12, 13)

8. ON-NEXT(S)=CIRC(on(z,y,result(xz,S5)): APPLICABLE(S),
ON-NOW(S), 10, 11, 7)

9. FINAL-NEXT(S,S,)=CIRC(final(z,S, result(x,S5)): ON-NEXT(S),
ON-GOAL(S,), 7, 12, 13)

DED(good(x,5,S,): FINAL-NOW(S,S,), FINAL-NEXT(S,S,),
ON-NOW(S), 19, 14, 15, 20, 16, 17, ?7?)

11. ON-PAST(S)= CIRC(on(z,y,s): PAST(S))

12. SELECTED(S) = CIRC(selected(x,s): PAST(S))

13. BADS(S,S,) = CIRC(bad(x,S,S,): ON-PAST(S), ON-NOW(S),
ON-NEXT(S), FINAL-NOW(S, 8,), FINAL-NEXT(S, S,),
SELECTED(S), 18, 2?7, 2?7, 22, 21, 22, 23, 27, 1)
DED(=bad(x,S,S,): BADS(S,S,))

12

Logical Spreadsheet Knowledge handling rules could be processed by a logical
spreadsheet

e two dimensional table = (formula schemas x instances)
e formula schemas: axioms, intermediate results and conclussions

o intermediate results, expressed as knowledge handling rules, should be ob-
tained by composition and combination of inference operations

e should allow building up proofs in a easy way

— outlining their main steps and refining them progressively (top down)

— building proofs out of simple initial results by inference composition and
combination (bottom up)

e should access different theorem provers combining their functionalities

13

Elaboration: move tower

Tower (composite object)

(28) tower(x1,..., 15, 8) <= Vi(l <i<n — on(wig1,2,8))
Note: block is a particular case.

On

(29) on(ty,ta,8) <> on(bottom(ty),top(ts), s)

Note: for blocks bottom(x) = top(x) =

Top

(30) tower(x1,...,Tn,8) =, =top(x1,..., 20, 3)
Bottom

(31) tower(x1,...,Tn,8) = x1 = bottom(x1,...,2,,8)

14

Postponability as problem simplification

(32) postponable(g, problem) —

improves(problem, adjoin(problem — g, g)
Postponable move 1: If a block is in final position, do not move it.

Postponable move 2: If a block is in final position, one need not think about
putting anything on that block until it can be put in final position.

Postponable move 2: If a block is on the table but not in final position, one need
not think about moving or putting anything on it until it can be put in final position.

15

Simplification 1: Remove all finished towers of blocks in final position.

Simplification 2: Remove all clear blocks on the table which are not in final
position.

Simplification 3: Replace any unfinished tower of blocks in final position by a
single block on the table and in final position.

Simplification 1: Replace any partially finished tower by a single block.

Partially finished tower

(33) partially — finished — tower(xq,...,2T,,8,89) <>
Vi(l <@ <n— on(wigr, i, 8) Aon(xip1,2:,89))

16

Safe moves
We need at most two moves to put a block in final position.

1. Clear final position by moving tower above it to the
table.

2. Put block in final position by moving tower above it (including it)
to final position.

Strategy: build towers bottom-up.

Can be improved:
1. some blocks can be put in final position by a single move

2. some blocks cannot be put in final position without their final position being
cleared up

17

