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Syntax

The following definitions describe the language DATALOG¬ as well
as logic programs with no function symbols.
Assume a language of constants and predicate constants. Assume
also that terms and atoms are built as in the corresponding first-
order language. Unlike classical logic and standard logic program-
ming, no function symbols are allowed. A rule is an expression of
the form:

ρ : A0 ← A1, . . . , Am, not Am+1, . . . , not An (1)

where A0, . . . An are atoms and not is a logical connective called
negation as failure. Also, for every rule let us define head(ρ) = A0,
pos(ρ) = A1, . . . , Am, neg(ρ) = Am+1, . . . , An and body(ρ) = pos(ρ)∪
neg(ρ). The head of rules is never empty, while if body(ρ) = ∅ we
refer to ρ as a fact.

A logic program is defined as a collection of rules. Rules with
variables are taken as shorthand for the sets of all their ground in-
stantiations and the set of all ground atoms in the language of a
program Π will be denoted by IBΠ .
Queries and constraints are expressions with the same structure of
rules but with empty head.

Semantics

Intuitively, a stable model is a possible view of the world that is
compatible with the rules of the program. Rules are therefore seen as
constraints on these views of the world.
Let us start defining stable models of the subclass of positive pro-
grams, i.e. those where, for every rule ρ, neg(ρ) = ∅.
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Definition 1. (Stable model of positive programs)

The stable model a(Π) of a positive program Π is the smallest subset
of BΠ such that for any rule (1) in Π:

A1, . . . , Am ∈ a(Π)⇒ A0 ∈ a(Π) (2)

Clearly, positive programs have a unique stable model, which coin-
cides with that obtained applying other semantics; in other words
positive programs are unambiguous. Moreover, the stable model of
positive programs can be obtained as the fixpoint of the immediate
consequence operator TΠ iterated from ∅ on.

Definition 2. (Stable models of programs)

Let Π be a logic program. For any set S of atoms, let Γ (Π, S) be a
program obtained from Π by deleting

(i) each rule that has a formula “not A” in its body with A ∈ S;

(ii) all formulae of the form “not A” in the bodies of the remaining
rules.

Clearly, Γ (Π, S) does not contain not , so that its stable model is
already defined. If this stable model coincides with S, then we say
that S is a stable model of Π. In other words, a stable model of Π
is characterized by the equation:

S = a(Γ (Π, S)). (3)

Programs which have a unique stable model are called categorical.

Let us define entailment in the stable models semantics. A ground
atom α is true in S if α ∈ S, otherwise α is false, i.e., by abuse of
notation, ¬α is true is S. This definition can extended to arbitrary
first-order formulae in the standard way.

We will say that Π entails a formula φ ( written Π |= φ) if φ is
true in all the stable models of Π. We will say that the answer to a
ground query γ is
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yes if γ is true in all stable models of Π, i.e. Π |= γ;

no if ¬γ is true in all stable models of Π, i.e. Π |= ¬γ;

unknown otherwise.

It is easy to see that logic programs are nonmonotonic, i.e. adding
new information to the program may force a reasoner associated with
it to withdraw its previous conclusions.

Programs with Explicit negation

Starting from Stable models semantics, Gelfond and Lifschitz have
introduced the class of extended programs, i.e. those were atoms may
appear with explicit negation in front:

A/¬A

Atoms and their explicit negations are called literals. For ex-
tended programs the answer sets semantics is defined, which basi-
cally resembles stable models but if an answer set contains both
A and ¬A then it contains all literals (ex contraditione quod libet
sequitur).

Corollary 1. (Gelfond and Lifschitz [GelLif91])
If an extended logic program has an inconsistent Answer set, this

is unique.
2

For programs without explicit negation stable models and an-
swer sets coincide, so that in the following we will refer to [consis-
tent]answer sets or stable models indifferently.

1 Reasoning with Answer Sets

In the following we report a basic result from Marek and Subrama-
nian which -together with its corollaries- will be used in proofs about
logic programs.

The result is slightly more general than the original, as it refers
to answer sets and it is given a simple proof based on minimality.
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Lemma 1 (Marek and Subramanian). The following result on
answer sets is due to Marek and Subramanian, originally for general
logic programs.

For any answer set A of an extended logic program Π:

– For any ground instance of a rule of the type:

L0 ← L1, . . . , Lm, not Lm+1, . . . , not Ln (4)

from Π, if

{L1, . . . , Lm} ⊆ A and {Lm+1, . . . , Ln} ∩ A = 0

then L0 ∈ A.
– If A is a consistent Answer set of Π and L0 ∈ A, then there

exists a ground instance rule of type 4 from Π such that:

{L1, . . . , Lm} ⊆ A and {Lm+1, . . . , Ln} ∩ A = 0.
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2 Examples

Example 1. π1 =
happy ← not sad.
sad← not happy.

has two answer sets: {happy} and {sad}.

Example 2. π2 =
happy ← not sad.
sad← not soandso.
soandso← not happy.

has no answer set.

Example 3. π3 =
drinks← happy.
drinks← sad.
happy ← not sad.
sad← not happy.

has two answer sets: {drinks, happy} and {drinks, sad}.
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Example 4. π4 =
soandso← not sad, not happy.
happy ← not sad, not soandso.
sad← not happy, not soandso.

has three answer sets: {happy} and {sad} and {soandso}.

Example 5. π5 =
f ← not f, not a.
a← not b.
b← not a.

has only one answer set: {a}.

Example 6. π6 =
f ← not f, a.
a← not b.
b← not a.

has only one answer set: {b}.

Exercise 1. πx =
f ← b.
c← a.
a← d.
d← not b.
b← not a.

2.1 Examples with explicit negation

Example 7. π7 =
¬a← not a.
b← ¬a.

has only one answer set: {b,¬a}.

3 Sources

Several ASP solvers are now available and can be downloaded from
[Solvers].

A textbook on Answer Set Programming is now available [Bar03],
and exercises can be downloaded from there.
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[MarTru99] W. Marek, and M. Truszczyński. Stable models and an alternative logic
programming paradigm, The Logic Programming Paradigm: a 25-Year Per-
spective, Springer-Verlag: 375–398.
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[SacZan97] Saccà D. and Zaniolo C., 1997. Deterministic and Non-Deterministic Sta-
ble Models. J. of Logic and Computation.

6


